skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goodrich, Michael T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available February 16, 2026
  3. In this paper, we derive parameterized Chernoff bounds and show their applications for simplifying the analysis of some well-known probabilistic algorithms and data structures. The parameterized Chernoff bounds we provide give probability bounds that are powers of two, with a clean formulation of the relation between the constant in the exponent and the relative distance from the mean. In addition, we provide new simplified analyses with these bounds for hash tables, randomized routing, and a simplified, non-recursive adaptation of the Floyd-Rivest selection algorithm. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Felsner, Stefan; Klein, Karsten (Ed.)
    We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature. 
    more » « less
  6. A data structure is history independent if its internal representation reveals nothing about the history of operations beyond what can be determined from the current contents of the data structure. History independence is typically viewed as a security or privacy guarantee, with the intent being to minimize risks incurred by a security breach or audit. Despite widespread advances in history independence, there is an important data-structural primitive that previous work has been unable to replace with an equivalent history-independent alternative---dynamic partitioning. In dynamic partitioning, we are given a dynamic set S of ordered elements and a size-parameter B, and the objective is to maintain a partition of S into ordered groups, each of size Θ(B). Dynamic partitioning is important throughout computer science, with applications to B-tree rebalancing, write-optimized dictionaries, log-structured merge trees, other external-memory indexes, geometric and spatial data structures, cache-oblivious data structures, and order-maintenance data structures. The lack of a history-independent dynamic-partitioning primitive has meant that designers of history-independent data structures have had to resort to complex alternatives. In this paper, we achieve history-independent dynamic partitioning. Our algorithm runs asymptotically optimally against an oblivious adversary, processing each insert/delete with O(1) operations in expectation and O(B log N/loglog N) with high probability in set size N. 
    more » « less
  7. Felsner, Stefan; Klein, Karsten (Ed.)
    We investigate force-directed graph drawing techniques under the constraint that some nodes must be anchored to stay within a given polygonal region associated with it (i.e. some positional information is known). The low energy layouts produced by such algorithms may reveal geographic information about nodes with no such knowledge a priori. Some applications of graph drawing with partial positional information include location-based social networks and rail networks, where the geographical locations need not be precise. 
    more » « less